Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Laryngoscope ; 133(1): 59-69, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35315085

RESUMO

EDUCATIONAL OBJECTIVE: At the conclusion of this presentation, participants should better understand the carcinogenic potential of pepsin and proton pump expression in Barrett's esophagus. OBJECTIVE: Barrett's esophagus (BE) is a well-known risk factor for esophageal adenocarcinoma (EAC). Gastric H+ /K+ ATPase proton pump and pepsin expression has been demonstrated in some cases of BE; however, the contribution of local pepsin and proton pump expression to carcinogenesis is unknown. In this study, RNA sequencing was used to examine global transcriptomic changes in a BE cell line ectopically expressing pepsinogen and/or gastric H+ /K+ ATPase proton pumps. STUDY DESIGN: In vitro translational. METHODS: BAR-T, a human BE cell line devoid of expression of pepsinogen or proton pumps, was transduced by lentivirus-encoding pepsinogen (PGA5) and/or gastric proton pump subunits (ATP4A, ATP4B). Changes relative to the parental line were assessed by RNA sequencing. RESULTS: Top canonical pathways associated with protein-coding genes differentially expressed in pepsinogen and/or proton pump expressing BAR-T cells included those involved in the tumor microenvironment and epithelial-mesenchymal transition. Top upstream regulators of coding transcripts included TGFB1 and ERBB2, which are associated with the pathogenesis and prognosis of BE and EAC. Top upstream regulators of noncoding transcripts included p300-CBP, I-BET-151, and CD93, which have previously described associations with EAC or carcinogenesis. The top associated disease of both coding and noncoding transcripts was cancer. CONCLUSIONS: These data support the carcinogenic potential of pepsin and proton pump expression in BE and reveal molecular pathways affected by their expression. Further study is warranted to investigate the role of these pathways in carcinogenesis associated with BE. LEVEL OF EVIDENCE: NA Laryngoscope, 133:59-69, 2023.


Assuntos
Esôfago de Barrett , Neoplasias Esofágicas , Humanos , Bombas de Próton , Pepsinogênio A/metabolismo , Inibidores da Bomba de Prótons , Esôfago de Barrett/complicações , Neoplasias Esofágicas/patologia , Pepsina A/metabolismo , Carcinogênese , Adenosina Trifosfatases/metabolismo , Microambiente Tumoral
3.
Cell Mol Gastroenterol Hepatol ; 12(4): 1391-1413, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34111600

RESUMO

BACKGROUND & AIMS: The transcription factor GATA4 is broadly expressed in nascent foregut endoderm. As development progresses, GATA4 is lost in the domain giving rise to the stratified squamous epithelium of the esophagus and forestomach (FS), while it is maintained in the domain giving rise to the simple columnar epithelium of the hindstomach (HS). Differential GATA4 expression within these domains coincides with the onset of distinct tissue morphogenetic events, suggesting a role for GATA4 in diversifying foregut endoderm into discrete esophageal/FS and HS epithelial tissues. The goal of this study was to determine how GATA4 regulates differential morphogenesis of the mouse gastric epithelium. METHODS: We used a Gata4 conditional knockout mouse line to eliminate GATA4 in the developing HS and a Gata4 conditional knock-in mouse line to express GATA4 in the developing FS. RESULTS: We found that GATA4-deficient HS epithelium adopted a FS-like fate, and conversely, that GATA4-expressing FS epithelium adopted a HS-like fate. Underlying structural changes in these epithelia were broad changes in gene expression networks attributable to GATA4 directly activating or repressing expression of HS or FS defining transcripts. Our study implicates GATA4 as having a primary role in suppressing an esophageal/FS transcription factor network during HS development to promote columnar epithelium. Moreover, GATA4-dependent phenotypes in developmental mutants reflected changes in gene expression associated with Barrett's esophagus. CONCLUSIONS: This study demonstrates that GATA4 is necessary and sufficient to activate the development of simple columnar epithelium, rather than stratified squamous epithelium, in the embryonic stomach. Moreover, similarities between mutants and Barrett's esophagus suggest that developmental biology can provide insight into human disease mechanisms.


Assuntos
Fator de Transcrição GATA4/genética , Mucosa Gástrica/embriologia , Mucosa Gástrica/metabolismo , Morfogênese/genética , Organogênese/genética , Animais , Sítios de Ligação , Biomarcadores , Esôfago , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Ligação Proteica
4.
Sci Rep ; 11(1): 3206, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33547361

RESUMO

GATA4 promotes columnar epithelial cell fate during gastric development. When ectopically expressed in the developing mouse forestomach, the tissue emerges as columnar-like rather than stratified squamous with gene expression changes that parallel those observed in the pre-malignant squamous to columnar metaplasia known as Barrett's esophagus (BE). GATA4 mRNA up-regulation and gene amplification occur in BE and its associated cancer, esophageal adenocarcinoma (EAC), and GATA4 gene amplification correlates with poor patient outcomes. Here, we explored the effect of ectopic expression of GATA4 in mature human esophageal squamous epithelial cells. We found that GATA4 expression in esophageal squamous epithelial cells compromised squamous cell marker gene expression and up-regulated expression of the canonical columnar cell cytokeratin KRT8. We observed GATA4 occupancy in the p63, KRT5, and KRT15 promoters, suggesting that GATA4 directly represses expression of squamous epithelial cell marker genes. Finally, we verified GATA4 protein expression in BE and EAC and found that exposure of esophageal squamous epithelial cells to acid and bile, known BE risk factors, induced GATA4 mRNA expression. We conclude that GATA4 suppresses expression of genes marking the stratified squamous epithelial cell lineage and that this repressive action by GATA4 may have implications in BE and EAC.


Assuntos
Adenocarcinoma/genética , Esôfago de Barrett/genética , Células Epiteliais/metabolismo , Neoplasias Esofágicas/genética , Fator de Transcrição GATA4/genética , Adenocarcinoma/patologia , Esôfago de Barrett/patologia , Linhagem Celular , Linhagem Celular Tumoral , Células Epiteliais/patologia , Neoplasias Esofágicas/patologia , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Humanos , Regiões Promotoras Genéticas , RNA Mensageiro/genética
5.
Laryngoscope ; 131(1): 130-135, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32250454

RESUMO

OBJECTIVES: The gastric H+/K+ ATPase proton pump has previously been shown to be expressed in the human larynx, however its contribution to laryngopharyngeal reflux (LPR) signs, symptoms and associated diseases such as laryngeal cancer is unknown. Proton pump expression in the larynx of patients with LPR and laryngeal cancer was investigated herein. A human hypopharyngeal cell line expressing the proton pump was generated to investigate its effects. STUDY DESIGN: In-vitro translational. METHODS: Laryngeal biopsies were obtained from three LPR and eight LSCC patients. ATP4A, ATP4B and HRPT1 were assayed via qPCR. Human hypopharyngeal FaDu cell lines stably expressing proton pump were created using lentiviral transduction and examined via transmission electron microscopy and qPCR for genes associated with inflammation or laryngeal cancer. RESULTS: Expression of ATP4A and ATP4B was detected in 3/3 LPR, 4/8 LSCC-tumor and 3/8 LSCC-adjacent specimens. Expression of ATP4A and ATP4B in FaDu elicited mitochondrial damage and expression of IL1B, PTGS2, and TNFA (P < .0001); expression of ATP4B alone did not. CONCLUSIONS: Gastric proton pump subunits are expressed in the larynx of LPR and LSCC patients. Mitochondrial damage and changes in gene expression observed in cells expressing the full proton pump, absent in those expressing a single subunit, suggest that acid secretion by functional proton pumps expressed in upper airway mucosa may elicit local cell and molecular changes associated with inflammation and cancer. LEVEL OF EVIDENCE: NA Laryngoscope, 131:130-135, 2021.


Assuntos
ATPase Trocadora de Hidrogênio-Potássio/biossíntese , Neoplasias Laríngeas/enzimologia , Refluxo Laringofaríngeo/enzimologia , Laringe/enzimologia , Células Cultivadas , Regulação da Expressão Gênica , ATPase Trocadora de Hidrogênio-Potássio/genética , Humanos , Hipofaringe/citologia , Neoplasias Laríngeas/genética , Refluxo Laringofaríngeo/genética , Células Tumorais Cultivadas
6.
Front Med (Lausanne) ; 7: 44, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32140468

RESUMO

Three-dimensional gastrointestinal organoid culture systems provide innovative and tractable models to investigate fundamental developmental biology questions using human cells. The goal of this study was to explore the role of the zinc-finger containing transcription factor GATA4 in gastric development using an organoid-based model of human stomach development. Given GATA4's vital role in the developing mouse gastrointestinal tract, we hypothesized that GATA4 plays an essential role in human stomach development. We generated a human induced pluripotent stem cell (hiPSC) line stably expressing an shRNA targeted against GATA4 (G4KD-hiPSCs) and used an established protocol for the directed differentiation of hiPSCs into stomach organoids. This in vitro model system, informed by studies in multiple non-human model systems, recapitulates the fundamental processes of stomach development, including foregut endoderm patterning, specification, and subsequent tissue morphogenesis and growth, to produce three-dimensional fundic or antral organoids containing functional gastric epithelial cell types. We confirmed that GATA4 depletion did not disrupt hiPSC differentiation to definitive endoderm (DE). However, when G4KD-hiPSC-derived DE cells were directed to differentiate toward budding SOX2+, HNF1B+ posterior foregut spheroids, we observed a striking decrease in the emergence of cell aggregates, with little to no spheroid formation and budding by GATA4-depleted hiPSCs. In contrast, control hiPSC-derived DE cells, expressing GATA4, formed aggregates and budded into spheroids as expected. These data support an essential role for GATA4 during the earliest stages of human stomach development.

7.
Sci Rep ; 9(1): 19303, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848396

RESUMO

Laminin-γ1 is required for early embryonic development; however, the need for laminin-γ1 synthesis in adulthood is unknown. A global and inducible mouse model of laminin-γ1 deficiency was generated to address this question. Genetic ablation of the Lamc1 gene in adult mice was rapidly lethal. Despite global Lamc1 gene deletion in tamoxifen-induced mutant mice, there was minimal change in total cardiac, pulmonary, hepatic or renal laminin protein. In contrast, laminin-γ1 was significantly depleted in the small intestines, which showed crypt hyperplasia and dissociation of villous epithelium from adjacent mesenchyme. We conclude that the physiologic requirement for laminin-γ1 synthesis in adult mice is dependent on a tissue-specific basal rate of laminin-γ1 turnover that results in rapid depletion of laminin-γ1 in the intestine.


Assuntos
Desenvolvimento Embrionário/genética , Intestinos/crescimento & desenvolvimento , Laminina/genética , Animais , Membrana Basal/crescimento & desenvolvimento , Membrana Basal/metabolismo , Feminino , Laminina/biossíntese , Fígado/metabolismo , Camundongos
8.
Dev Biol ; 435(2): 97-108, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29339095

RESUMO

The gastrointestinal (GI) tract, in simplest terms, can be described as an epithelial-lined muscular tube extending along the cephalocaudal axis from the oral cavity to the anus. Although the general architecture of the GI tract organs is conserved from end to end, the presence of different epithelial tissue structures and unique epithelial cell types within each organ enables each to perform the distinct digestive functions required for efficient nutrient assimilation. Spatiotemporal regulation of signaling pathways and downstream transcription factors controls GI epithelial morphogenesis during development to confer essential regional-specific epithelial structures and functions. Here, we discuss the fundamental functions of each GI tract organ and summarize the diversity of epithelial structures present along the cephalocaudal axis of the GI tract. Next, we discuss findings, primarily from genetic mouse models, that have defined the roles of key transcription factors during epithelial morphogenesis, including p63, SOX2, SOX15, GATA4, GATA6, HNF4A, and HNF4G. Additionally, we examine how the Hedgehog, WNT, and BMP signaling pathways contribute to defining unique epithelial features along the cephalocaudal axis of the GI tract. Lastly, we examine the molecular mechanisms controlling regionalized cytodifferentiation of organ-specific epithelial cell types within the GI tract, concentrating on the stomach and small intestine. The delineation of GI epithelial patterning mechanisms in mice has provided fundamental knowledge to guide the development and refinement of three-dimensional GI organotypic culture models such as those derived from directed differentiation of human pluripotent stem cells and those derived directly from human tissue samples. Continued examination of these pathways will undoubtedly provide vital insights into the mechanisms of GI development and disease and may afford new avenues for innovative tissue engineering and personalized medicine approaches to treating GI diseases.


Assuntos
Células Epiteliais/citologia , Trato Gastrointestinal/citologia , Mucosa Intestinal/citologia , Animais , Diferenciação Celular , Células Epiteliais/fisiologia , Trato Gastrointestinal/embriologia , Trato Gastrointestinal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/fisiologia , Humanos , Absorção Intestinal , Intestino Delgado/citologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Camundongos , Morfogênese , Família Multigênica , Especificidade de Órgãos , Transdução de Sinais/fisiologia , Estômago/citologia , Fatores de Transcrição/fisiologia
9.
Cell Mol Gastroenterol Hepatol ; 3(3): 422-446, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28462382

RESUMO

BACKGROUND & AIMS: Patterning of the small intestinal epithelium along its cephalocaudal axis establishes three functionally distinct regions: duodenum, jejunum, and ileum. Efficient nutrient assimilation and growth depend on the proper spatial patterning of specialized digestive and absorptive functions performed by duodenal, jejunal, and ileal enterocytes. When enterocyte function is disrupted by disease or injury, intestinal failure can occur. One approach to alleviate intestinal failure would be to restore lost enterocyte functions. The molecular mechanisms determining regionally defined enterocyte functions, however, are poorly delineated. We previously showed that GATA binding protein 4 (GATA4) is essential to define jejunal enterocytes. The goal of this study was to test the hypothesis that GATA4 is sufficient to confer jejunal identity within the intestinal epithelium. METHODS: To test this hypothesis, we generated a novel Gata4 conditional knock-in mouse line and expressed GATA4 in the ileum, where it is absent. RESULTS: We found that GATA4-expressing ileum lost ileal identity. The global gene expression profile of GATA4-expressing ileal epithelium aligned more closely with jejunum and duodenum rather than ileum. Focusing on jejunal vs ileal identity, we defined sets of jejunal and ileal genes likely to be regulated directly by GATA4 to suppress ileal identity and promote jejunal identity. Furthermore, our study implicates GATA4 as a transcriptional repressor of fibroblast growth factor 15 (Fgf15), which encodes an enterokine that has been implicated in an increasing number of human diseases. CONCLUSIONS: Overall, this study refines our understanding of an important GATA4-dependent molecular mechanism to pattern the intestinal epithelium along its cephalocaudal axis by elaborating on GATA4's function as a crucial dominant molecular determinant of jejunal enterocyte identity. Microarray data from this study have been deposited into NCBI Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) and are accessible through GEO series accession number GSE75870.

10.
Stem Cell Reports ; 8(3): 491-499, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28238794

RESUMO

Genome editing in induced pluripotent stem cells is currently hampered by the laborious and expensive nature of identifying homology-directed repair (HDR)-modified cells. We present an approach where isolation of cells bearing a selectable, HDR-mediated editing event at one locus enriches for HDR-mediated edits at additional loci. This strategy, called co-targeting with selection, improves the probability of isolating cells bearing HDR-mediated variants and accelerates the production of disease models.


Assuntos
Edição de Genes , Marcação de Genes , Genoma Humano , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Sistemas CRISPR-Cas , Linhagem Celular , Reparo do DNA por Junção de Extremidades , Técnicas de Introdução de Genes , Vetores Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Reparo de DNA por Recombinação
11.
Stem Cell Reports ; 7(5): 826-839, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27720905

RESUMO

Much of our understanding about how intestinal stem and progenitor cells are regulated comes from studying the late fetal stages of development and the adult intestine. In this light, little is known about intestine development prior to the formation of stereotypical villus structures with columnar epithelium, a stage when the epithelium is pseudostratified and appears to be a relatively uniform population of progenitor cells with high proliferative capacity. Here, we investigated a role for WNT/ß-CATENIN signaling during the pseudostratified stages of development (E13.5, E14.5) and following villus formation (E15.5) in mice. In contrast to the well-described role for WNT/ß-CATENIN signaling as a regulator of stem/progenitor cells in the late fetal and adult gut, conditional epithelial deletion of ß-catenin or the Frizzled co-receptors Lrp5 and Lrp6 had no effect on epithelial progenitor cell proliferation in the pseudostratified epithelium. Mutant embryos displayed obvious developmental defects, including loss of proliferation and disruptions in villus formation starting only at E15.5. Mechanistically, our data suggest that WNT signaling-mediated proliferation at the time of villus formation is driven by mesenchymal, but not epithelial, WNT ligand secretion.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , Proteínas Wnt/metabolismo , Via de Sinalização Wnt , Animais , Morte Celular , Diferenciação Celular , Proliferação de Células , Expressão Gênica , Intestinos/citologia , Intestinos/embriologia , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Transgênicos , Morfogênese/genética , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Organogênese/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Proteínas Wnt/genética , beta Catenina/genética , beta Catenina/metabolismo
12.
Cell Mol Gastroenterol Hepatol ; 2(2): 189-209, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27066525

RESUMO

BACKGROUND & AIMS: The embryonic small intestinal epithelium is highly proliferative, and although much is known about mechanisms regulating proliferation in the adult intestine, the mechanisms controlling epithelial cell proliferation in the developing intestine are less clear. GATA4, a transcription factor that regulates proliferation in other developing tissues, is first expressed early in the developing gut in midgut endoderm. GATA4 function within midgut endoderm and the early intestinal epithelium has not been investigated. METHODS: Using Sonic Hedgehog Cre to eliminate GATA4 in the midgut endoderm of mouse embryos, we determined the impact of loss of GATA4 on intestinal development, including epithelial cell proliferation, between E9.5-E18.5. RESULTS: We found that intestinal length and width were decreased in GATA4 mutants compared with controls. GATA4-deficient intestinal epithelium contained fewer cells, and epithelial girth was decreased. We further observed a decreased proportion of proliferating cells at E10.5 and E11.5 in GATA4 mutants. We demonstrated that GATA4 binds to chromatin containing GATA4 consensus binding sites within Cyclin D2 (Ccnd2), Cyclin dependent kinase 6 (Cdk6), and Frizzled 5 (Fzd5). Moreover, Ccnd2, Cdk6, and Fzd5 transcripts were reduced at E11.5 in GATA4 mutant tissue. Villus morphogenesis was delayed, and villus structure was abnormal in GATA4 mutant intestine. CONCLUSIONS: Our data identify GATA4 as an essential regulator of early intestinal epithelial cell proliferation. We propose that GATA4 controls proliferation in part by directly regulating transcription of cell cycle mediators. Our data further suggest that GATA4 affects proliferation through transcriptional regulation of Fzd5, perhaps by influencing the response of the epithelium to WNT signaling.

13.
J Biol Chem ; 291(12): 6146-57, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26792861

RESUMO

The transcription factor, X-box-binding protein-1 (XBP1), controls the development and maintenance of the endoplasmic reticulum (ER) in multiple secretory cell lineages. We show here that Hepatocyte Nuclear Factor 4α (HNF4α) directly induces XBP1 expression. Mutations in HNF4α cause Mature-Onset Diabetes of the Young I (MODYI), a subset of diabetes characterized by diminished GSIS. In mouse models, cell lines, and ex vivo islets, using dominant negative and human- disease-allele point mutants or knock-out and knockdown models, we show that disruption of HNF4α caused decreased expression of XBP1 and reduced cellular ER networks. GSIS depends on ER Ca(2+) signaling; we show that diminished XBP1 and/or HNF4α in ß-cells led to impaired ER Ca(2+) homeostasis. Restoring XBP1 expression was sufficient to completely rescue GSIS in HNF4α-deficient ß-cells. Our findings uncover a transcriptional relationship between HNF4α and Xbp1 with potentially broader implications about MODYI and the importance of transcription factor signaling in the regulation of secretion.


Assuntos
Proteínas de Ligação a DNA/genética , Fator 4 Nuclear de Hepatócito/fisiologia , Células Secretoras de Insulina/fisiologia , Fatores de Transcrição/genética , Transcrição Gênica , Animais , Cálcio/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/genética , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica , Glucose/fisiologia , Células HEK293 , Homeostase , Humanos , Insulina/metabolismo , Secreção de Insulina , Camundongos , Fatores de Transcrição de Fator Regulador X , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box
14.
BMC Res Notes ; 7: 902, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25495347

RESUMO

BACKGROUND: Studies of adult mice lacking either GATA4 or GATA6 in the small intestine demonstrate roles for these factors in small intestinal biology. Deletion of Gata4 in the adult mouse intestine revealed an essential role for GATA4 in jejunal function. Deletion of Gata6 in the adult mouse ileum alters epithelial cell types and ileal enterocyte gene expression. The effect of deletion of Gata4 or Gata6 alone during embryonic small intestinal development, however, has not been examined. We recently demonstrated that loss of both factors in double conditional knockout embryos causes severe defects in jejunal development. Therefore, the goal of this study is to provide phenotypic analysis of the small intestine of single Gata4 and Gata6 conditional knockout embryos. RESULTS: Villin-Cre was used to delete Gata4 or Gata6 in the developing intestinal epithelium. Elimination of either GATA4 or GATA6 in the jejunum, where these factors are co-expressed, caused changes in enterocyte and enteroendocrine cell gene expression. Ectopic expression of markers of the ileal-specific bile acid metabolism pathway was induced in GATA4-deficient jejunum but not in GATA6-deficient jejunum. A subtle increase in goblet cells was also identified in jejunum of both mutants. In GATA6-deficient embryonic ileum, villus length was altered, and enterocyte gene expression was perturbed including ectopic expression of the colon marker Car1. Goblet cells were increased, and enteroendocrine cells were decreased. CONCLUSIONS: Overall, we show that aspects of the phenotypes observed in the small intestine of adult Gata4 and Gata6 conditional knockout mice emerge during development. The effect of eliminating GATA6 from the developing ileum was greater than that of eliminating either GATA4 or GATA6 from the developing jejunum likely reflecting functional redundancy between these factors in the jejunum. Although GATA4 and GATA6 functions overlap, our data also suggest unique functions for GATA4 and GATA6 within the developing intestine. GATA4 likely operates independently of GATA6 within the jejunum to regulate jejunal versus ileal enterocyte identity and consequently jejunal physiology. GATA6 likely regulates enteroendocrine cell differentiation cell autonomously whereas GATA4 affects this population indirectly.


Assuntos
Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/metabolismo , Intestino Delgado/crescimento & desenvolvimento , Animais , Intestino Delgado/metabolismo , Camundongos , Camundongos Knockout
15.
Dev Biol ; 392(2): 283-94, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24929016

RESUMO

The intestinal epithelium performs vital roles in organ function by absorbing nutrients and providing a protective barrier. The zinc-finger containing transcription factors GATA4 and GATA6 regulate enterocyte gene expression and control regional epithelial cell identity in the adult intestinal epithelium. Although GATA4 and GATA6 are expressed in the developing intestine, loss of either factor alone during the period of epithelial morphogenesis and cytodifferentiation fails to disrupt these processes. Therefore, we tested the hypothesis that GATA4 and GATA6 function redundantly to control these aspects of intestinal development. We used Villin-Cre, which deletes specifically in the intestinal epithelium during the period of villus development and epithelial cytodifferentiation, to generate Gata4Gata6 double conditional knockout embryos. Mice lacking GATA4 and GATA6 in the intestinal epithelium died within 24h of birth. At E18.5, intestinal villus architecture and epithelial cell populations were altered. Enterocytes were lost, and goblet cells were increased. Proliferation was also increased in GATA4-GATA6 deficient intestinal epithelium. Although villus morphology appeared normal at E16.5, the first time at which both Gata4 and Gata6 were efficiently reduced, changes in expression of markers of enterocytes, goblet cells, and proliferative cells were detected. Moreover, goblet cell number was increased at E16.5. Expression of the Notch ligand Dll1 and the Notch target Olfm4 were reduced in mutant tissue indicating decreased Notch signaling. Finally, we found that GATA4 occupies chromatin near the Dll1 transcription start site suggesting direct regulation of Dll1 by GATA4. We demonstrate that GATA4 and GATA6 play an essential role in maintaining proper intestinal epithelial structure and in regulating intestinal epithelial cytodifferentiation. Our data highlight a novel role for GATA factors in fine tuning Notch signaling during intestinal epithelial development to repress goblet cell differentiation.


Assuntos
Diferenciação Celular/fisiologia , Fator de Transcrição GATA4/metabolismo , Fator de Transcrição GATA6/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Mucosa Intestinal/embriologia , Animais , Proteínas de Ligação ao Cálcio , Diferenciação Celular/genética , Imunoprecipitação da Cromatina , Imunofluorescência , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Mucosa Intestinal/citologia , Camundongos , Camundongos Knockout , Análise de Sequência com Séries de Oligonucleotídeos , Receptores Notch/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/fisiologia
16.
J Clin Invest ; 122(10): 3516-28, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23006325

RESUMO

Pancreatic agenesis is a human disorder caused by defects in pancreas development. To date, only a few genes have been linked to pancreatic agenesis in humans, with mutations in pancreatic and duodenal homeobox 1 (PDX1) and pancreas-specific transcription factor 1a (PTF1A) reported in only 5 families with described cases. Recently, mutations in GATA6 have been identified in a large percentage of human cases, and a GATA4 mutant allele has been implicated in a single case. In the mouse, Gata4 and Gata6 are expressed in several endoderm-derived tissues, including the pancreas. To analyze the functions of GATA4 and/or GATA6 during mouse pancreatic development, we generated pancreas-specific deletions of Gata4 and Gata6. Surprisingly, loss of either Gata4 or Gata6 in the pancreas resulted in only mild pancreatic defects, which resolved postnatally. However, simultaneous deletion of both Gata4 and Gata6 in the pancreas caused severe pancreatic agenesis due to disruption of pancreatic progenitor cell proliferation, defects in branching morphogenesis, and a subsequent failure to induce the differentiation of progenitor cells expressing carboxypeptidase A1 (CPA1) and neurogenin 3 (NEUROG3). These studies address the conserved and nonconserved mechanisms underlying GATA4 and GATA6 function during pancreas development and provide a new mouse model to characterize the underlying developmental defects associated with pancreatic agenesis.


Assuntos
Fator de Transcrição GATA4/fisiologia , Fator de Transcrição GATA6/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Organogênese/genética , Pâncreas/embriologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Sítios de Ligação , Carboxipeptidases A/análise , Diferenciação Celular , Divisão Celular , Linhagem da Célula , Modelos Animais de Doenças , Endoderma/metabolismo , Células Epiteliais/patologia , Fator de Transcrição GATA4/deficiência , Fator de Transcrição GATA4/genética , Fator de Transcrição GATA6/deficiência , Fator de Transcrição GATA6/genética , Técnicas de Silenciamento de Genes , Genótipo , Idade Gestacional , Hiperglicemia/congênito , Hiperglicemia/genética , Insulina/metabolismo , Secreção de Insulina , Camundongos , Proteínas do Tecido Nervoso/análise , Especificidade de Órgãos , Pâncreas/anormalidades , Pâncreas/patologia , Transcrição Gênica
17.
Dev Biol ; 371(1): 1-12, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22766025

RESUMO

E-cadherin, the primary epithelial adherens junction protein, has been implicated as playing a critical role in nucleating formation of adherens junctions, tight junctions, and desmosomes. In addition to its role in maintaining structural tissue integrity, E-cadherin has also been suggested as an important modulator of cell signaling via interactions with its cytoplasmic binding partners, catenins, as well as with growth factor receptors. Therefore, we proposed that loss of E-cadherin from the developing mouse intestinal epithelium would disrupt intestinal epithelial morphogenesis and function. To test this hypothesis, we used a conditional knockout approach to eliminate E-cadherin specifically in the intestinal epithelium during embryonic development. We found that E-cadherin conditional knockout mice failed to survive, dying within the first 24 hours of birth. Examination of intestinal architecture at E18.5 demonstrated severe disruption to intestinal morphogenesis in animals lacking E-cadherin in the epithelium of the small intestine. We observed changes in epithelial cell shape as well as in the morphology of villi. Although junctional complexes were evident, junctions were abnormal, and barrier function was compromised in E-cadherin mutant intestine. We also identified changes in the epithelial cell populations present in E-cadherin conditional knockout animals. The number of proliferating cells was increased, whereas the number of enterocytes was decreased. Although Wnt/ß-catenin target mRNAs were more abundant in mutants compared with controls, the amount of nuclear activated ß-catenin protein was dramatically lower in mutants compared with controls. In summary, our data demonstrate that E-cadherin is essential for intestinal epithelial morphogenesis and homeostasis during embryonic development.


Assuntos
Caderinas/metabolismo , Homeostase/fisiologia , Mucosa Intestinal/embriologia , Intestino Delgado/embriologia , Morfogênese/fisiologia , Animais , Caderinas/genética , Adesão Celular/fisiologia , Imunofluorescência , Immunoblotting , Imuno-Histoquímica , Mucosa Intestinal/ultraestrutura , Intestino Delgado/citologia , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , beta Catenina/metabolismo
18.
Development ; 138(19): 4143-53, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21852396

RESUMO

The availability of pluripotent stem cells offers the possibility of using such cells to model hepatic disease and development. With this in mind, we previously established a protocol that facilitates the differentiation of both human embryonic stem cells and induced pluripotent stem cells into cells that share many characteristics with hepatocytes. The use of highly defined culture conditions and the avoidance of feeder cells or embryoid bodies allowed synchronous and reproducible differentiation to occur. The differentiation towards a hepatocyte-like fate appeared to recapitulate many of the developmental stages normally associated with the formation of hepatocytes in vivo. In the current study, we addressed the feasibility of using human pluripotent stem cells to probe the molecular mechanisms underlying human hepatocyte differentiation. We demonstrate (1) that human embryonic stem cells express a number of mRNAs that characterize each stage in the differentiation process, (2) that gene expression can be efficiently depleted throughout the differentiation time course using shRNAs expressed from lentiviruses and (3) that the nuclear hormone receptor HNF4A is essential for specification of human hepatic progenitor cells by establishing the expression of the network of transcription factors that controls the onset of hepatocyte cell fate.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Fator 4 Nuclear de Hepatócito/fisiologia , Hepatócitos/citologia , Fígado/embriologia , Células-Tronco Pluripotentes/citologia , Animais , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Fator 4 Nuclear de Hepatócito/metabolismo , Humanos , Lentivirus/genética , Camundongos , RNA Interferente Pequeno/metabolismo
19.
Hepatology ; 51(1): 297-305, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19998274

RESUMO

UNLABELLED: There exists a worldwide shortage of donor livers available for orthotropic liver transplantation and hepatocyte transplantation therapies. In addition to their therapeutic potential, primary human hepatocytes facilitate the study of molecular and genetic aspects of human hepatic disease and development and provide a platform for drug toxicity screens and identification of novel pharmaceuticals with potential to treat a wide array of metabolic diseases. The demand for human hepatocytes, therefore, heavily outweighs their availability. As an alternative to using donor livers as a source of primary hepatocytes, we explored the possibility of generating patient-specific human hepatocytes from induced pluripotent stem (iPS) cells. CONCLUSION: We demonstrate that mouse iPS cells retain full potential for fetal liver development and describe a procedure that facilitates the efficient generation of highly differentiated human hepatocyte-like cells from iPS cells that display key liver functions and can integrate into the hepatic parenchyma in vivo.


Assuntos
Diferenciação Celular/fisiologia , Hepatócitos/transplante , Células-Tronco Pluripotentes Induzidas/fisiologia , Animais , Humanos , Camundongos
20.
Hepatology ; 49(5): 1645-54, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19205030

RESUMO

UNLABELLED: Serum response factor (SRF) is a transcription factor that binds to a CarG box motif within the serum response element of genes that are expressed in response to mitogens. SRF plays essential roles in muscle and nervous system development; however, little is known about the role of SRF during liver growth and function. To examine the function of SRF in the liver, we generated mice in which the Srf gene was specifically disrupted in hepatocytes. The survival of mice lacking hepatic SRF activity was lower than that of control mice; moreover, surviving mutant mice had lower blood glucose and triglyceride levels compared with control mice. In addition, Srf(loxP/loxP)AlfpCre mice were smaller and had severely depressed levels of serum insulin-like growth factor 1 (IGF-1). Srf-deficient livers were also smaller than control livers, and liver cell proliferation and viability were compromised. Gene array analysis of SRF depleted livers revealed a reduction in many messenger RNAs, including those encoding components of the growth hormone/IGF-1 pathway, cyclins, several metabolic regulators, and cytochrome p450 enzymes. CONCLUSION: SRF is essential for hepatocyte proliferation and survival, liver function, and control of postnatal body growth by regulating hepatocyte gene expression.


Assuntos
Tamanho Corporal , Hepatócitos/metabolismo , Fígado/fisiologia , Fator de Resposta Sérica/metabolismo , Animais , Glicemia/análise , Proliferação de Células , Sobrevivência Celular , Feminino , Expressão Gênica , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Knockout , Tamanho do Órgão , Organogênese , Triglicerídeos/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...